skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eareckson, E. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Realistic characterization of subglacial hydrology necessitates knowledge of the range in form, scale, and spatiotemporal evolution of drainage networks. A relict subglacial meltwater corridor on the deglaciated Antarctic continental shelf encompasses 80 convergent and divergent channels, many of which are hundreds of meters wide and several of which lack a definable headwater source. Without significant surface‐melt contributions to the bed like similarly described landforms in the Northern Hemisphere, channelized drainage capacity varies non‐systematically by three orders of magnitude downstream. This signifies apparent additions and losses of basal water to the bed‐channelized system that relates to bed topography. Larger magnitude grounding‐line retreat events occurred while the channel system was active than once channelized drainage had ceased. Overall, this corridor demonstrates that meltwater drainage styles co‐exist in time and space in response to bed topography, with prolonged impacts on grounding‐line behavior. 
    more » « less